
Introduction to Windows Version 1.0 4-1

4
INTRODUCTION TO WINDOWS
 Demonstration Program: Windows1

Scope of This Chapter
On Mac OS 8/9, Mac OS 8.5 introduced a number of significant new features and associated system
software functions to the Window Manager. This chapter limits itself to the Window Manager as it existed
prior to Mac OS 8.5, as influenced by the Carbon API. The additional features introduced with Mac OS
8.5 and Carbon are addressed at Chapter 16.1

Window Basics

Windows, Documents, the Window Manager and Graphics Ports

A window is an area on the screen in which the user can enter or view information. Macintosh
applications use windows for most communications and interactions with the user, including editing
documents and presenting and acknowledging alerts and dialogs.

Users generally enter data in windows and your application typically lets the user save this data to a file.
Your application typically creates document windows for this purpose. A document window is a view
into the document. If the document is larger than the window, the window is a view of a portion of the
document.

The Window Manager, which, amongst other things, provides functions for managing windows, itself
depends on QuickDraw. QuickDraw supports drawing into graphics ports. Each window represents a
graphics port.

Standard Window Elements

Note

In the following, Mac OS 8/9 terminology is used. Size box equates to resize control. Zoom box equates to
zoom button. Close box equates to close button. Collapse box equates to minimise button.

The user can manipulate windows using a set of standard window elements supported by the Window
Manager. These standard elements are as follows:

• Title Bar. The title bar is the bar at the top of a window that displays the window's name, contains the
close, zoom, and collapse boxes, and indicates whether a window is active. The name of a newly
created window with which no document is yet associated should be "untitled". The name of a
window containing a saved document should be the document's filename.

1 By definition, all new functions introduced with Mac OS 8.5 and later are automatically supported by Carbon.

4-2 Version 1.0 Introduction to Windows

• Close Box. The close box allows the user to close a window. The close box is sometimes called the
go-away box.

• Zoom Box. The zoom box allows the user to choose between two different window sizes, one
established by the user and one by the application. On Mac OS 8/9, the zoom box can be full,
vertical, or horizontal.

• Collapse Box. The collapse box allows the user to collapse (minimise on Mac OS X) and uncollapse
a window.

• Size Box. The size box allows the user change the size of a window.

• Draggable Area. That part of the window's "frame" less the close, zoom,collapse, and size boxes.

Scroll bars, which allow the user to view different parts of a document containing more information than
can be displayed in the window at the one time, are not an integral part of a window and must be separately
created and managed. By convention, scroll bars are placed on the right and lower edges of those windows
that require them.

Active and Inactive Windows

The active window is the window in which the user is currently working. It is identified by its general
appearance (see Fig 1). All keyboard activity targets the active window and only the active window
interacts with the user.

FIG 1 - APPEARANCE OF ACTIVE AND INACTIVE WINDOWS

ACTIVE WINDOW APPEARANCE

INACTIVE WINDOW APPEARANCE INACTIVE WINDOW APPEARANCE

ACTIVE WINDOW APPEARANCE

When the user activates one of your application's windows, the Window Manager redraws the window's
title bar and frame/shadow, the close box/button, the title text, the zoom box/button, the collapse
box/minimise button, and the size box/resize control as shown at Fig 1. Your application must reinstate the
appearance of the rest of the window to its state prior to the deactivation, activating any controls (scroll
bars, etc.), drawing the scroll box (scroller, in Mac OS X terminology) in the same position, restoring the
insertion point, and highlighting the previous selection, etc.

When a window belonging to your application becomes inactive, the Window Manager redraws the title
bar and frame/shadow as shown at Fig 1. Your application must deactivate any controls, remove
highlighting from selections, and so on.

When the user clicks in an inactive document window, your application should make the window active
but should not make any selections in response to the click. To make a selection, the user should be
required to click again. This behaviour protects the user from unintentionally losing an existing selection
when activating the window.

Window Layering

On Mac OS 8/9, all of an application's document windows are in the one layer. On Mac OS X, document
windows from different applications can be interleaved, and clicking on a window to bring it forward does

Introduction to Windows Version 1.0 4-3

not affect the layering of other windows. That said, if an application has a Window menu, choosing Bring
All To Front will cause all of the application's document windows to be brought in front of all of the
document windows of all other applications. Clicking on the application's icon in the Dock has the same
effect.

Types of Windows
The Window Manager defines a large number of window types, which may be classified as follows:

• Document types.

• Dialog and alert types.

• Floating window types.

Window types are often referred to by the constant used in 'WIND' resources, and by certain Window
Manager functions, to specify the type of window required. That constant determines both the visual
appearance of the window and its behaviour.

Document Types

Fig 2 shows the eight available window types for documents and the constants that represent those types.

FIG 2 - WINDOW TYPES FOR DOCUMENTS

kWindowFullZoomDocumentProc

kWindowDocumentProc

kWindowVertZoomDocumentProc

kWindowHorizZoomDocumentProc

Movable window.

Movable window,
vertical zoom box.

Movable window,
horizontal zoom box.

Movable window,
full zoom box.

kWindowFullZoomGrowDocumentProc

kWindowGrowDocumentProc

kWindowVertZoomGrowDocumentProc

kWindowHorizZoomGrowDocumentProc

Movable window,
size box.

Movable window,
vertical zoom box,
size box.

Movable window,
horizontal zoom box,
size box.

Movable window,
full zoom box,
size box.

Movable window,
minimize button.

Movable window,
minimize button,
resize control.

Movable window,
minimize button,
zoom button.

Movable window,
minimize button,
zoom button,
resize control.

Movable window,
minimize button,
zoom button.

Movable window,
minimize button,
zoom button,
resize control.

Movable window,
minimize button,
zoom button.

Movable window,
minimize button,
zoom button,
resize control.

4-4 Version 1.0 Introduction to Windows

Dialog and Alert Types

Fig 3 shows the seven available window types for modal and movable modal dialogs and alerts and the
constants that represent those types. (The document window type represented by the constant
kWindowDocumentProc is used for modeless dialogs.)

FIG 3 - WINDOW TYPES FOR DIALOGS AND ALERTS

kWindowMovableAlertProc

kWindowPlainDialogProc

kWindowShadowDialogProc

kWindowMovableModalGrowProc

kWindowModalDialogProc

kWindowMovableModalDialogProc

Modal dialog.

Modal dialog, shadow.

Modal dialog.

Movable modal dialog.

kWindowAlertProc

Modal alert. Movable modal alert.

Movable modal dialog with size
box.

Modal dialog.

Modal dialog, shadow.

Modal dialog.

Modal alert.

Movable modal dialog.

Movable modal dialog with resize
control

Movable modal alert.

Floating Window Types

Figs 4 and 5 show the sixteen available window types for floating windows and the constants that represent
those types.

Introduction to Windows Version 1.0 4-5

FIG 4 - WINDOW TYPES FOR FLOATING WINDOWS (TITLE BAR AT TOP)

kWindowFloatProc kWindowFloatGrowProc

kWindowFloatVertZoomProc kWindowFloatVertZoomGrowProc

kWindowFloatHorizZoomProc kWindowFloatHorizZoomGrowProc

kWindowFloatFullZoomProc kWindowFloatFullZoomGrowProc

Floating window. Floating window. Floating window,
size box.

Floating window,
resize control.

Floating window,
vertical zoom box.

Floating window,
zoom button.

Floating window
horizontal zoom box.

Floating window,
zoom button.

Floating window,
full zoom box.

Floating window,
zoom button.

Floating window,
vertical zoom box,
size box.

Floating window,
zoom button,
resize control.

Floating window,
horizontal zoom box,
size box.

Floating window,
zoom button,
resize control.

Floating window
full zoom box,
size box.

Floating window,
zoom button,
resize control.

FIG 5 - WINDOW TYPES FOR FLOATING WINDOWS (PSUEDO TITLE BAR AT SIDE)

kWindowFloatSideFullZoomGrowProc

kWindowFloatSideProc kWindowFloatSideGrowProc

kWindowFloatSideVertZoomProc kWindowFloatSideVertZoomGrowProc

kWindowFloatSideHorizZoomProc kWindowFloatSideHorizZoomGrowProc

kWindowFloatSideFullZoomProc

Floating window,
side title bar.

Floating window,
side title bar.

Floating window,
side title bar,
vertical zoom box.

Floating window,
side title bar,
zoom button.

Floating window,
side title bar,
horizontal zoom box.

Floating window,
side title bar,
zoom button.

Floating window,
side title bar,
full zoom box.

Floating window,
side title bar,
zoom button.

Floating window,
side title bar,
size box.

Floating window,
side title bar,
resize control.

Floating window,
side title bar,
vertical zoom box,
size box.

Floating window,
side title bar,
zoom button,
resize control.

Floating window,
side title bar,
horizontal zoom box,
size box.

Floating window,
side title bar,
zoom button,
resize control.

Floating window
side title bar,
full zoom box,
size box.

Floating window,
side title bar,
zoom button,
resize control.

4-6 Version 1.0 Introduction to Windows

Window Definition IDs

The constants shown at Figs 2, 3, 4, and 5 each represent a specific window definition ID. A window
definition ID is a 16-bit value which contains the resource ID of the window's window definition function
in the upper 12 bits and a variation code in the lower 4 bits:

• Window Definition Function. The system software and various Window Manager functions call a
window's window definition function (WDEF) when they need to perform certain window-related
actions, such as drawing or re-sizing a window's frame.

• Variation Code. A single WDEF can support up to 16 different window types. The WDEF defines a
variation code, an integer from 0 to 15, for each window type it supports.

Four WDEFs (resource IDs 64, 65, 66, and 67) are associated with the three classifications of window
types.

The window definition ID is derived by multiplying the resource ID of the WDEF by 16 and adding the
variation code to the result, as is shown in the following:

WDEF
Resource ID

Variation
Code

Window Definition ID
(Value)

Window Definition ID
(Constant)

64 0 64 * 16 + 0 = 1024 kWindowDocumentProc
64 1 64 * 16 + 1 = 1025 kWindowGrowDocumentProc
64 2 64 * 16 + 2 = 1026 kWindowVertZoomDocumentProc
64 3 64 * 16 + 3 = 1027 kWindowVertZoomGrowDocumentProc
64 4 64 * 16 + 4 = 1028 kWindowHorizZoomDocumentProc
64 5 64 * 16 + 5 = 1029 kWindowHorizZoomGrowDocumentProc
64 6 64 * 16 + 6 = 1030 kWindowFullZoomDocumentProc
64 7 64 * 16 + 7 = 1031 kWindowFullZoomGrowDocumentProc

65 0 65 * 16 + 0 = 1040 kWindowPlainDialogProc
65 1 65 * 16 + 1 = 1041 kWindowShadowDialogProc
65 2 65 * 16 + 2 = 1042 kWindowModalDialogProc
65 3 65 * 16 + 3 = 1043 kWindowMovableModalDialogProc
65 4 65 * 16 + 4 = 1044 kWindowAlertProc
65 5 65 * 16 + 5 = 1045 kWindowMovableAlertProc
65 6 65 * 16 + 6 = 1046 kWindowMovableModalGrowProc

66 1 66 * 16 + 1 = 1057 kWindowFloatProc
66 3 66 * 16 + 3 = 1059 kWindowFloatGrowProc
66 5 66 * 16 + 5 = 1061 kWindowFloatVertZoomProc
66 7 66 * 16 + 7 = 1063 kWindowFloatVertZoomGrowProc
66 9 66 * 16 + 9 = 1065 kWindowFloatHorizZoomProc
66 11 66 * 16 + 11 = 1067 kWindowFloatHorizZoomGrowProc
66 13 66 * 16 + 13 = 1069 kWindowFloatFullZoomProc
66 15 66 * 16 + 15 = 1071 kWindowFloatFullZoomGrowProc

67 1 67 * 16 + 1 = 1073 kWindowFloatSideProc
67 3 67 * 16 + 3 = 1075 kWindowFloatSideGrowProc
67 5 67 * 16 + 5 = 1077 kWindowFloatSideVertZoomProc
67 7 67 * 16 + 7 = 1079 kWindowFloatSideVertZoomGrowProc
67 9 67 * 16 + 9 = 1081 kWindowFloatSideHorizZoomProc
67 11 67 * 16 + 11 = 1083 kWindowFloatSideHorizZoomGrowProc
67 13 67 * 16 + 13 = 1085 kWindowFloatSideFullZoomProc
67 15 67 * 16 + 15 = 1087 kWindowFloatSideFullZoomGrowProc

Introduction to Windows Version 1.0 4-7

Window Type Usage

For Documents

A kWindowFullZoomGrowDocumentProc window is normally used for document windows because it supports all
window manipulation elements. Note that, because you can optionally suppress the close box/button when
you create the window, the Window Manager does not necessarily draw/highlight that particular element.
Also note that, when the related document contains more data that will fit in the window, you must add
scroll bars.

For Modal Alerts and Modal Dialogs

Modal alerts and modal dialogs are simply special-purpose windows. Modal alerts generally use the
window type kWindowAlertProc and modal dialogs generally use window type kWindowModalDialogProc. 2

For Movable Modal Alerts and Movable Modal Dialogs

Movable modal alerts and movable modal dialogs are used when you want the user to be able to move the
alert or dialog window or to bring another application to the foreground before the dialog is dismissed.
Movable modal alerts use the window type kWindowMovableAlertProc and movable modal dialogs use the
window type kWindowMovableModalDialogProc.

For Modeless Dialogs

Modeless dialogs allow the user to perform other tasks within the application without first dismissing the
dialog. User interface guidelines require that the kWindowDocumentProc window type, which can be moved or
closed but not resized or zoomed, be used for modeless dialogs.

Window Regions
The Window Manager recognises the special-purpose regions3 shown at Figs 6 and 7.

FIG 6 - WINDOW REGIONS - MAC OS 8/9

COLLAPSE BOX REGION

CLOSE BOX REGION

TITLE TEXT REGION

ZOOM BOX REGION

SIZE BOX REGION

DRAG REGION

TITLE BAR REGION

CONTENT REGION

STRUCTURE REGION

kWindowFullZoomGrowDocument
window with close box

PROXY ICON REGION

2 The creation and handling of alerts and dialogs is addressed in detail at Chapter 8.
3 A region is an arbitrary area, or set of areas, on the QuickDraw coordinate plane. The outline of a region is one or more
closed loops. Regions are explained in more detail at Chapter 12.

4-8 Version 1.0 Introduction to Windows

FIG 7 - WINDOW REGIONS - MAC OS X

RESIZE CONTROL REGION

kWindowFullZoomGrowDocument
window with close box

PROXY ICON REGION

COLLAPSE BUTTON REGION

CLOSE BUTTON REGION

TITLE TEXT REGION

ZOOM BUTTON REGION

DRAG REGION

TITLE BAR REGION

CONTENT REGION

STRUCTURE REGION

Handles to these and two other window-related regions, which are represented by constants of type
RegionWindowCode, may be obtained via a call to GetWindowRegion. The definitions of these regions, and the
constants which represent them, are as follows:

Region Constant Definition
Title bar region kWindowTitleBarRgn The entire area occupied by a window's title bar, including the

title text region.
Title text region kWindowTitleTextRgn That portion of a window's title bar that is occupied by the name

of the window and the window proxy icon. . (See Chapter 16.)
Close box/button
region

kWindowCloseBoxRgn The area occupied by a window's close box/button.

Zoom box/button
region

kWindowZoomBoxRgn The area occupied by a window's zoom box/button.

Drag region kWindowDragRgn On Mac OS X, this equates to the title bar region. On Mac OS
8/9, this includes the window frame, including the title bar and
window outline, but excluding the close box, zoom box, collapse
box, and size box (if any).

Size box/resize
control region

kWindowGrowRgn The area occupied by a window's size box/resize control.

Collapse
box/minimise button
region

kWindowCollapseBoxRgn The area occupied by a window's collapse box/minimise button.

Proxy icon region kWindowTitleProxyIconRgn The area occupied by the window proxy icon. (See Chapter 16.)
Structure region kWindowStructureRgn The entire area occupied by a window, including the frame and

content region. (The window may be partially off-screen but its
structure region does not change.)

Content region kWindowContentRgn That part of a window in which the contents of a document and
the window's controls (including scroll bars) are displayed.

Update region kWindowUpdateRgn Contains all areas of a window's content region that need
updating (re-drawing).

Global port region kWindowGlobalPortRgn The bounds of the window's graphics port, in global coordinates,
even when the window is collapsed.

The Desktop (Gray) Region

Another region of some relevance to the Window Manager is the desktop region (sometimes known as the
gray region). The desktop region is the region below the menu bar, including all screen real estate in a
system equipped with multiple monitors. The Window Manager maintains a pointer to the desktop region

Introduction to Windows Version 1.0 4-9

in a low-memory global variable named GrayRgn. You can get a handle to the desktop region using the
function GetGrayRgn.

Controls and Control Lists
Windows may contain controls. The most common control in a window is the scroll bar (see Fig 8),
which should be included in the window when there is more data than can be shown at one time in the
space available. The Control Manager is used to create, display and manipulate scroll bars.

All controls "belonging" to an individual window and are displayed within the graphics port that represents
that window. Entries pointing to the descriptions of a window's controls are stored in a control list
maintained for that window by the Window Manager.

FIG 8 - SCROLL BARS

SCROLL ARROW

SCROLL BOX

GRAY AREA

SCROLL ARROW

SCROLL ARROW

SCROLLER

SCROLL TRACK

SCROLL ARROW

The Window List
At any one time, many windows, from many applications, may be displayed on the desktop. To track all of
the windows on the desktop, the Window Manager maintains a private data structure called the window
list. The arrangement of the entries in this list reflects the current front-to-back ordering of the windows
on the desktop, the frontmost (active) window being the first in the list.

The function GetWindowList returns a reference to the window object (see below) for the first window in the
window list. The function GetNextWindow returns a reference to the window object for the next window in
the window list.

The Graphics Port and the Window Object

The Graphics Port

Each window represents a QuickDraw graphics port, an opaque object of type CGrafPort which describes a
drawing environment with its own coordinate system. The Window Manager creates a graphics port when
it creates the window. 4

The location of a window on the screen is defined in QuickDraw's global coordinates. QuickDraw's
global coordinates originate at the top left corner of the main screen and extend vertically and horizontally
within the range -32768 to 32,767. The positive x-axis extends rightward and the positive y-axis extends
downward (see Fig 9).

4 The graphics port is addressed in detail at Chapter 11.

4-10 Version 1.0 Introduction to Windows

FIG 9 - A WINDOW'S LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0, v=0) IN GLOBAL COORDINATES

(h=70, v=60) IN GLOBAL COORDINATES
(h=0, v=0) IN LOCAL COORDINATES

(h=200, v=100) IN LOCAL COORDINATES
(h=270, v=160) IN GLOBAL COORDINATES

- v

+ h

h

The graphics port object stores a rectangle called the port rectangle. In a graphics port representing a
window, the port rectangle represents the window's content region. Within the port rectangle, the drawing
area is described in local coordinates. Fig 9 illustrates the local and global coordinate systems for a
window which is 100 pixels high by 200 pixels wide, and which is placed with its content region 70 pixels
down and 60 pixels to the right of the upper left corner of the screen.

When the Window Manager creates a window, it places the origin of the local coordinate system at the
upper-left corner of the window's port rectangle. Note, however, that the Event Manager describes mouse
events in global coordinates, and that you must do most of your window manipulation in global
coordinates.

The Window Object

The Window Manager stores information about individual windows in opaque data structures called
window objects. The data type WindowPtr is defined as a pointer to a window object:

typedef struct OpaqueWindowPtr* WindowPtr;

Note that the data type WindowPtr is equivalent to the newer data type WindowRef:

typedef WindowPtr WindowRef;

Carbon Note

One of the fundamental differences between the Classic API and the Carbon API is that, in the Classic API, the
data type WindowPtr is defined as a pointer to a graphics port structure, not to a window structure. The first field
in the Classic API's window structure is a graphics port structure, meaning that the graphics port structure has the
same address as the window structure in which it resides. In the Classic API, a WindowPtr must be cast to a
WindowPeek (which is defined as a pointer to a window structure) in order for the fields of the window structure to
be directly accessed.

Accessor Functions

Accessor functions are provided to access the information in window objects. The accessor functions are
as follows:

Function Description
GetWindowPort Gets a pointer to the specified window's graphics port object.
GetWindowKind Gets the window kind (dialog or application) of the specified window.
SetWindowKind Sets the window kind (dialog or application) of the specified window.
IsWindowVisible Determines whether the specified window is visible.

Introduction to Windows Version 1.0 4-11

ShowWindow Makes the specified window visible.
HideWindow Makes the specified window invisible.
ShowHide Makes the specified window visible or invisible without affecting front-to-back ordering.
IsWindowHilited Determines whether the specifed window is highlighted.
HiliteWindow Highlights or unhighlights a window.
GetWindowRegion Gets a handle to the specified window's structure, content, and update regions.

Note: Handles to the other regions shown at Figs 6 and 7 are not included in the window
object. The WDEF determines the location of those particular regions.

GetWTitle Gets the specified window's title.
SetWTitle Sets the specified window's title.
GetWindowPic Gets a handle to the picture stored in the window object by SetWindowPic.
SetWindowPic Stores a handle to a picture in the window object, causing the Window Manager to draw the

picture instead of generating an update event.
GetWRefCon Gets the reference constant stored in the specified window's window object by SetWRefCon.
SetWRefCon Sets a reference constant in the specified window's window object.
GetWindowStandardState Gets the window's standard state (see below) rectangle.
SetWindowStandardState Sets the window's standard state (see below) rectangle.
GetWindowUserState Gets the window's user state (see below) rectangle.
SetWindowUserState Sets the window's user state (see below) rectangle.

Events in Windows
As stated at Chapter 2, the Window Manager itself generates two types of events central to window
management, namely, activate events and update events.

One of the Window Manager's main tasks is to report the location of the cursor when the application
receives a mouse-down event. As was also stated at Chapter 2, the Window Manager function FindWindow
may be used to determine whether the cursor is in a window when the mouse-down occurs and, if it is in a
window, in exactly which window and which part of that window. FindWindow is thus the function which
enables you to distinguish between those mouse-down events that affect the window itself and those that
affect the document displayed in the window.

Creating Your Application's Windows
You typically create document and floating windows from resources of type 'WIND', although you can
create them programmatically using the function NewCWindow. Additional methods of creating windows,
including floating windows, programmatically are described at Chapter 16.

'WIND' Resources

When creating resources with Resorcerer, it is advisable that you refer to a diagram and description of the
structure of the resource and relate that to the various items in the Resorcerer editing windows.
Accordingly, the following describes the structure of the resource associated with the creation of document
and floating windows.

Structure of a Compiled 'WIND' Resource

Fig 10 shows the structure of a compiled 'WIND' resource and how it "feeds" the window object.

4-12 Version 1.0 Introduction to Windows

FIG 10 - STRUCTURE OF A COMPILED WINDOW ('WIND') RESOURCE

INITIAL RECTANGLE

WINDOW DEFINITION ID

VISIBILITY STATUS

PRESENCE OF CLOSE BOX

REFERENCE CONSTANT

LENGTH (n) OF WINDOW TITLE

POSITIONING SPECIFICATION

8

2

2

2

4

1

n

2

BYTES

WINDOW TITLE

Window Object
Colour graphics port
Kind
Visible/invisible
Highlighted/un-highlighted
Has/has not a close box
Window definition function
Title
Reference Constant

The following describes the main fields of the 'WIND' resource:

Field Description
INITIAL RECTANGLE A rectangle that defines the initial size and placement, in global coordinates, of the

window's content region. This rectangle can be changed before displaying the window,
either programmatically or by using an optional positioning specification (see below).

WINDOW DEFINITION ID The window's definition ID.
VISIBILITY STATUS Specifies whether the window is to be visible or invisible. Note that this really means

whether the Window Manager displays the window; it does not necessarily mean that the
window can be seen on the screen. (A visible window might be completely covered by
other windows; nevertheless its visibility status is still "visible".)

PRESENCE OF CLOSE BOX/BUTTON Specifies whether the window is to have a close box/button.
REFERENCE CONSTANT A reference constant which your application can use for whatever data it needs to associate

with the window. When it builds a new window object, the Window Manager stores in that
object whatever value you specify in this field. (You can also store a reference constant in
the window object programmatically via a call to SetWRefCon.)

WINDOW TITLE A string that specifies the window's title.
POSITIONING SPECIFICATION An positioning specification (optional). If this field contains a positioning specification, it

overrides the window position established by the rectangle in the first field.
The positioning constants (see below) which may be assigned to this field are very useful
for specifying the initial position of dialogs, alerts, and windows for new documents.
However, the position (and size) of a new window intended to display a previously saved
document should be the same as the window position (and size) when the document was
last displayed.

Positioning Specification

The constants for the positioning specification field are as follows:

Constant Value Meaning
kWindowNoPosition 0x0000 (Use initial rectangle.)
kWindowDefaultPosition 0x0000 (Use initial rectangle.)
kWindowCenterMainScreen 0x280A Centre on main screen.
kWindowAlertPositionMainScreen 0x300A Place in alert position on main screen.
kWindowStaggerMainScreen 0x380A Stagger on main screen.
kWindowCenterParentWindow 0xA80A Center on parent window.
kWindowAlertPositionParentWindow 0xB00A Place in alert position on parent window.
kWindowStaggerParentWindow 0xB80A Stagger relative to parent window.
kWindowCenterParentWindowScreen 0x680A Center on parent window screen.
kWindowAlertPositionParentWindowScreen 0x700A Alert position on parent window screen.
kWindowStaggerParentWindowScreen 0x780A Stagger on parent window screen.

Introduction to Windows Version 1.0 4-13

Creating a 'WIND' Resource Using Resorcerer

Fig 11 shows a 'WIND' resource being created with Resorcerer.

FIG 11 - CREATING A 'WIND' RESOURCE USING RESORCERER

RESORCERER 'WIND' RESOURCE EDITING WINDOW

INITIAL RECTANGLE

WINDOW DEFINITION ID

VISIBILITY STATUS

PRESENCE OF CLOSE BOX

REFERENCE CONSTANT

LENGTH (n) OF WINDOW TITLE

POSITIONING SPECIFICATION

WINDOW TITLE

These clickable icons pertain to the old
superseded window types. Disregard these
icons and simply enter the required window
definition ID at the ProcID: item.

The resource ID of the window definition
function and the variation code appear
automatically when the window definition
ID is entered at the ProcID: item.

Creates 'wctb' resources.
Not relevant in the
Carbon era. Disregard.

STRUCTURE OF A COMPILED 'WIND' RESOURCE

Creating the Window From the 'WIND' Resource

GetNewCWindow is used to create a window from a 'WIND' resource.

Adding Scroll Bars

If a window requires scroll bars, you typically create them from 'CNTL' resources at the time that you create
the document window, and then display them when you make the window visible. (See Chapter 7.)

Window Visibility

If the 'WIND' resource specifies that the new window is visible, GetNewCWindow displays the window
immediately. If you are creating a document window, however, it is best to create the window in an
invisible state and then make it visible when you are ready to display it. The right time to display a
window depends on whether the window is associated with a new or a saved document:

• If you are creating a window because the user is creating a new document, you should display the
window immediately (by calling ShowWindow).

• If you are creating a new window to display a saved document, you should retrieve the document
and draw it in the window before calling ShowWindow.

Positioning a New Document Window on the DeskTop

The positioning constants previously described allow you to position new windows automatically. When
used, those positioning constants concerned with staggering new window placement will ensure that the
Window Manager will use any vacated position for the next new window.

Getting Available Window Positioning Bounds

Carbon introduced the function GetAvailableWindowPositioningBounds, which allows your application to
determine the available window positioning bounds on a given screen. The function returns the bounds of
the screen rectangle less the menu bar and, on Mac OS X, the Dock.

4-14 Version 1.0 Introduction to Windows

Positioning a Saved Document Window on the DeskTop

For windows created for the purpose of displaying a saved document, you should replicate the size and
location of the document's window as it was when the document was last saved. When the user saves a
document, you must therefore also save the user state rectangle and the current zoom state of the window
(that is, whether the window is in the user state or the standard state).

User State, Standard State, and Zoom State

Some explanation of user state and standard state is necessary. The user state is the last size and position
the user, through sizing and dragging actions, established for a window. The standard state is the size and
position that your application defines as being best for the display of the data contained in the window.

The user and standard states are stored in the window object and may be set and retrieved using the
functions GetWindowStandardState, SetWindowStandardState, GetWindowUserState, and SetWindowUserState (see
Accessor Functions, above). In addition, the function IsWindowInStandardState allows your application to
determine the current zoom state, i.e., whether the window is zoomed "out" to the standard state or zoomed
"in" to the user state.

Saving the Window State

Returning to the matter of saving the user state and the current zoom state of the window, for windows
with zoom boxes/buttons you typically store this data as a custom resource in the resource fork of the
document file.

Drawing a Window's Contents

Your application is responsible for drawing a window's contents. It typically uses the Control Manager to
draw the window's controls and then draws the user data itself.

Managing Multiple Windows and Associated Data
Your application is likely to have multiple windows open on the desktop at once, each of which will have
some form of data, such as text, associated with it. This data, which is external to the window object, may
be regarded as the "property" of an individual window.

As previously stated, you can store a reference constant in a window object using the function SetWRefCon.
Typically, your application will use SetWRefCon to store a handle to a structure containing the window's
external data. This structure, usually referred to as a document structure, might hold a handle to the text
being edited, handles to the scroll bars, a file reference number and a file system specification for the
document's file, plus a flag indicating whether data has changed since the last save, as shown in the
following example:

typedef struct
{
 TEHandle editRec;
 ControlHandle vScrollBar;
 Controlhandle hScrollbar;
 short fileRefNum;
 FSSpec fileFSSpec;
 boolean windowTouched;
} docStructure;
typedef docStructure **docStructureHdl;

Your application can retrieve the reference constant using the function GetWRefCon.

Introduction to Windows Version 1.0 4-15

Handling Events

Handling Mouse Events

Your application, when it is the active application, receives all mouse-down events in its menu bar and its
windows. When it receives a mouse-down event, your application should call FindWindow to ascertain
which window, and which part of that window, the mouse-down occurred in. (In this context, the menu
bar is considered to be a window part). The application should then take the appropriate action based on
which window, and which part of that window, the mouse-down occurred in.

Mouse-Downs in Inactive Windows

When you receive a mouse-down event in an inactive document window or modeless dialog, and if the
active window is a document window or a modeless dialog, you should call SelectWindow, passing it the
window reference. SelectWindow re-layers the windows as necessary, removes highlighting from the
previously active window, brings the newly-activated window to the front, highlights it and generates the
activate and update events necessary to tell all affected applications which windows must be redrawn.

Note that, if the active window is a modal or movable modal alert or dialog, no action is required by your
application. Modal and movable modal alerts and dialogs are handled by the ModalDialog function, which
does not pass the event to your application.

Handling Keyboard Events

Whenever your application is the active application, it receives all key-down events (except, of course, for
the system-defined Command-Shift-number key sequences).

When you receive a key-down event, you should first check whether the user is holding down a modifier
key and another key at the same time. Your application should respond to key-down events by inserting
data into the document, changing the display or taking other appropriate actions. Typically, your
application provides feedback for standard keystrokes by drawing the character on the screen.

Handling Update Events

Handling Update Events — Mac OS 8/9

On Mac OS 8/9, the Window Manager maintains an update region for each window. The update region
represents the parts of a window's content region that have been affected by changes to the desktop and
need redrawing. The Event Manager continually scans the window objects of all the windows on the
desktop, looking for non-empty update regions. If it finds an update region that is not empty, it generates
an update event for that window.

When your application receives an update event, it should redraw the content area. When your application
redraws the content area, the Window Manager clips all screen drawing to the visible region of the
window's graphics port. The visible region is that part of a graphics port that is not covered by other
windows, that is, the part that is actually visible on screen. The Window Manager stores a handle to the
visible region in the graphics port object.

Before redrawing the content area, your application should call BeginUpdate and, when it has completed the
drawing, it should call EndUpdate. As shown at Fig 12, BeginUpdate temporarily adjusts the visible region to
equate to the intersection of the visible region and the update region. Because QuickDraw limits its
drawing to this temporarily modified visible region, only those parts of the window which actually need
updating are drawn. BeginUpdate also clears the update region, thus ensuring that the Event Manager does
not continue sending an endless stream of update events.

When the drawing is completed, and as shown at Fig 12, EndUpdate restores the visible region of the
graphics port to the full visible region.

4-16 Version 1.0 Introduction to Windows

FIG 12 - EFFECTS OF BeginUpdate AND EndUpdate ON VISIBLE AND UPDATE REGIONS

BEFORE SCREEN CHANGE BEFORE BeginUpdate AFTER BeginUpdate AFTER EndUpdate

VISIBLE REGION LIMITED TO
INTERSECTION OF UPDATE
REGION AND VISIBLE REGION

VISIBLE REGION

UPDATE REGION

VISIBLE REGION RESTORED

The reason for these update region/visible region machinations is that the handle to the update region is
stored in the window object while the handle to the visible region is stored in the graphics port object.
QuickDraw knows the graphics port object intimately, but knows nothing about the window object or its
contents. QuickDraw needs something it can work with, hence the above process whereby the visible
region is temporarily made the equivalent of the update region while QuickDraw does its drawing.

Manipulating the Update Region

Your application can force or suppress update events by manipulating the update region. You can call
InValWindowRect or InvalWindowRgn to add a rectangle or region to the update region, thus causing an update
event to be generated and, as a consequence, that area to be redrawn. You can also remove a rectangle or
region from the update region by calling ValidWindowRect or ValidWindowRgn so as to decrease the time spent
redrawing. For example, an unaffected text area could be removed from the update region of a window
that is being resized.

Handling Update Events — Mac OS X

On Mac OS X, windows are double-buffered, meaning that your application does not draw into the
window's graphics port itself but rather into a separate buffer. The Window Manager flushes the buffer to
the window's graphics port when your application calls WaitNextEvent. On Mac OS X, your application
does not require update events to cater for the situation where part, or all, of a window's content region has
just been exposed as a result of the user moving an overlaying window.

The receipt of an update event on Mac OS X simply means that your application should draw the required
contents of the window. The swapping of visible and update regions required on Mac OS 8/9 is not
required, so calls to BeginUpdate and EndUpdate are irrelevant (and ignored) on Mac OS X.

As is the case on Mac OS 8/9, your application can force the generation of an update event by calling
InValWindowRect or InvalWindowRgn. (Your application can also force the buffer to be flushed to the

Introduction to Windows Version 1.0 4-17

window's graphics port by calling the QuickDraw function QDFlushPortBuffer. This is required, for
example, when your application is drawing periodically in a loop that does not call WaitNextEvent.)

Type-Dependent Update Functions

An update function should typically first determine whether the type of window being updated is a
document window or some other type of window. If the window is a document window, a document
window updating function should be called. If the window is a modeless dialog, an updating function for
that modeless dialog should be called.

Handling Activate Events

Activate events are generated by the Window Manager to inform your application that a window is
becoming active or is about to be made inactive. Each activate event specifies the window to be changed
and whether the window is to be activated or deactivated.

Your application typically triggers activate events itself by calling SelectWindow following a mouse-down
event in a non-active window. SelectWindow brings the window in which the mouse-down occurred to the
front, adds highlighting to that window, and removes highlighting from the previously active window.
SelectWindow then generates one activate event to tell your application to perform its part of the deactivation
of the previously active window, followed by and another activate event to tell your application to perform
its part of the activation of the newly activated window.

When your application receives the event for the window about to be made inactive, it should hide the
window's controls and remove any highlighting of selections. When your application receives the event
for the newly activated window, it should draw the controls and restore the content area as necessary. This
latter might involve, for example, adding the insertion point at its former location or highlighting the
previously highlighted selection.

The function for handling activate events should typically first determine whether the window being
activated/deactivated is a document window or a modeless dialog. It should then perform the appropriate
activation/deactivation actions. The function does not need to check for modal alerts or modal dialogs
because the Dialog Manager's ModalDialog function automatically handles activate events for those
windows.

Manipulating Windows

Dragging a Window

When a mouse-down event occurs in the title bar, your application should call DragWindow, which tracks the
user's actions until the mouse button is released. DragWindow moves an image of the window on the screen
as the user moves the mouse. When the user releases the mouse, DragWindow redraws the window in its new
location. The window is then activated (unless the Command key was pressed during the drag).

The area within which the window may be dragged is specified by a Rect variable passed in DragWindow's
boundsRect parameter.

Carbon Note

In Carbon, assigning NULL to the boundsRect parameter has the effect of setting the parameter to the bounding
rectangle of the desktop region.

Zooming a Window

The zoom box/button allows the user to alternate between two window sizes and positions known as the
user state and the standard state. To amplify the previous description of user state and standard state:

• The user state is the window size and location established by the user. (If the user has not yet moved
or resized the window, the user state is the size and location of the window when it was created.)

4-18 Version 1.0 Introduction to Windows

• The standard state is the size and position that your application specifies as being the optimum for
the display of the data contained in the window. In a word-processing program, for example, a
window in the standard state might show the full width of a page and as much length as will fit on
the screen. If the user changes the page size using the Page Setup dialog, the application might
adjust the standard state width to reflect the new page width.

• The user and standard states are stored in the window object. The Window Manager sets the initial
standard and user states when it fills in the window object on creation, and it updates the user state
whenever the user resizes the window.

Mac OS 8.5 introduced new functions for implementing window zooming. Prior to Mac OS 8.5, when
FindWindow returned either inZoomIn or inZoomOut, your application would call TrackBox to handle highlighting
of the zoom box/button and to determine whether the cursor was inside or outside the zoom box/button
when the button was released. If TrackBox returned true, your application would call ZoomWindow to resize
the window.

The advantage of the ZoomWindowIdeal function introduced with Mac OS 8.5 is that, unlike ZoomWindow, it
zooms the window in accordance with the following Apple human interface guidelines relating to a
window's standard state:

• "A window should move as little as possible when zooming between the user state and standard
state, to avoid distracting the user."

• "A window in its standard state should be positioned so that it is entirely on one screen."

• "If a window straddles more than one screen in the user state, when it is zoomed to the standard state
it should be zoomed to the screen that contains the largest portion of the window’s content region."

• "If the ideal size for the standard state is larger than the destination screen, the dimensions of the
standard state should be that of the destination screen, minus a few pixels of boundary. If the
destination screen is the main screen, space should also be left for the menu bar."

• "When a window is zoomed from the user state to the standard state, the top left corner of the
window should remain anchored in place; however, if the standard state of the window cannot fit on
the screen with the top left corner anchored, the window should be “nudged” so that the parts of the
window in the standard state that would fall offscreen are, instead, just onscreen."

Other advantages of ZoomWindowIdeal are that:

• It allows you to specify, in its ioIdealSize parameter, the desired height and width of the window's
content region in the standard state.

• On Mac OS X, it takes account of the current height of the Dock when zooming to the standard state
and constrains the zoom accordingly.

When ZoomWindowIdeal is used, another function introduced with Mac OS 8.5 (IsWindowInStandardState)
must be used to determine the appropriate part code (inZoomIn or InZoomOut) to pass in ZoomWindowIdeal's
partCode parameter.

Vertical or Horizontal Zoom Boxes — Mac OS 8/9

Your application should ensure that, when a vertical zoom box is clicked, only the vertical size of the
associated window changes. Similarly, when a horizontal zoom box is clicked, your application should
ensure that only the horizontal size of the associated window changes.

Re-Sizing a Window

Mac OS 8.5 introduced a new function for implementing window re-sizing. Prior to Mac OS 8.5, when the
user pressed the mouse button in the size box, your application would call GrowWindow. This function
displayed a grow image, a dotted outline of the window frame and scroll bar area which expanded and
contracted as the user dragged the size box. When the user released the mouse button, GrowWindow returned
a long integer which described the window's new height (in the high-order word) and width (in the low-

Introduction to Windows Version 1.0 4-19

order word). A value of zero indicated that the window size did not change. When the mouse-button was
released and GrowWindow returned a non-zero value, your application called SizeWindow to draw the window
in its new size.

The function introduced with Mac OS 8.5 is ResizeWindow. ResizeWindow moves a grow image around the
screen, following the user's cursor movements, and handles all user interaction until the mouse button is
released. Unlike the function GrowWindow, there is no need to follow this call with a call to SizeWindow. Once
resizing is complete, ResizeWindow draws the window in its new size.

If you pass NULL in ResizeWindow's sizeConstraints parameter, resizing will be constrained by the default
minimum size (64 by 64 pixels) and the default maximum size (the bounding rectangle of the desktop
region). However, the option is available to supply custom upper and lower re-sizing limits in the fields of
a Rect variable passed in the sizeConstraints parameter. The limits represented by each field are as follows:

• sizeConstraints.top represents the minimum vertical measurement.

• sizeConstraints.left represents the minimum horizontal measurement.

• sizeConstraints.bottom represents the maximum vertical measurement.

• sizeConstraints.right represents the maximum horizontal measurement.

Note that the values assigned represent window dimensions, not screen coordinates.

Following a window resize, your application should adjust its scroll bars and window contents to
accommodate the new size.

Carbon Note

In Carbon, NULL may be assigned to ResizeWindow's newContentRect parameter if the new dimension of the
window's content region is not required.

Closing a Window

The user closes a window by clicking in the close box/button or by choosing Close from the File menu.

When the user clicks in the close box/button, TrackGoAway should be called to track the mouse until the user
releases the mouse button. If TrackGoAway returns true, meaning that the user did not release the mouse
button outside the close box/button, your application should call its function for closing down the window.

The actions taken by your window closing function depend on the type of information the window contains
and whether the contents need to be saved. The function should cater for different types of windows, that
is, modeless dialogs (which may be merely hidden with HideWindow rather than closed completely) and
standard document windows. In the latter case, the function should check whether any changes have been
made to the document since it was opened and, if so, provide the user with an opportunity to save the
document to a file before closing the window. (This whole process is explained in detail at Chapter 18.)

As for the window itself, DisposeWindow removes a window from the screen, removes it from the window
list, and discards all of its data storage, including the window object.

Hiding and Showing a Window

Ordinarily, when the user elects to close a window, you dispose of the window. In some circumstances,
however, it may be more appropriate to simply hide the window instead of removing its data structures. It
is usually more appropriate, for example, to hide, rather than dispose of, modeless dialogs. That way,
when the user next chooses the relevant menu command, the dialog is already available, and in the same
location, as when it was last used.

HideWindow hides a window. ShowWindow will make the window visible and SelectWindow will make it the
active window.

4-20 Version 1.0 Introduction to Windows

Providing Help Balloons (Mac OS 8/9)

Help Balloons —'hrct' and 'hwin' Resources

The Mac OS 8/9 system software provides help balloons for the title bar, draggable area, close box, zoom
box, and collapse box for windows created with the standard WDEFs. Where applicable, you should
provide help balloons for the content area of your windows.

How you choose to provide help balloons for the content area depends mainly on whether your windows
are static or dynamic. A static window does not change its title or reposition any of the objects within its
content area. A dynamic window can reposition any of it objects within its content area, or its title may
change. For example, any window that scrolls past areas of interest to the user is a dynamic window
because the object with associated help balloons can change location as the user scrolls. The following
addresses the case of static windows only.

Help balloons for static document and floating windows are defined in 'hrct' and 'hwin' resources.

Creating 'hrct' and 'hwin' Resources Using Resorcerer

The 'hrct' (rectangle help) resource is used to define hot rectangles for displaying help balloons in a static
window and to specify the help messages for those balloons. All 'hrct' resources must have resource IDs
equal to or greater than 128. Fig 13 shows an 'hrct' resource being created using Resorcerer.

Introduction to Windows Version 1.0 4-21

FIG 13 - CREATING AN 'hrct' RESOURCE USING RESORCERER

Use the string specified within this component of this 'hrct' resource. (Specified in this example.)
Use the picture stored in the specified 'PICT' resource.
Use the specified text string stored in the specified 'STR#' resource.
Use the styled text stored in the specified 'TEXT' and 'styl' resources.
Use the text string stored in the specified 'STR ' resource.
No help message. Skip this item.

Pascal string in
this component

Coordinates of
balloon's tip

Coordinates of
hot rectangle

Help message

HELP MANAGER VERSION

OPTIONS

BALLOON DEFINITION FUNCTION

VARIATION CODE

HOT RECTANGLE COMPONENT COUNT

FIRST HOT RECTANGLE COMPONENT

LAST HOT RECTANGLE COMPONENT

Help Manager version

Variation code for WDEF. Governs the location of the balloon's tip.

The number of hot rectangle components defined in the rest of this resource.

Header component

Resource ID of the window definition function (WDEF) used for drawing help balloons.
The standard WDEF's resource ID is 126. This can be specified by 0 in Resorcerer.

STRUCTURE OF A COMPILED hrct' RESOURCE

A number of options. 0, below, is irrelevant. 1 is not relevant for static windows. 2 and
3 relate to the three different ways that the Help Manager draws and removes balloons.
4 is used in 'hwin' resources only.

SIZE

TYPE OF DATA

TIP'S COORDINATES

HOT RECTANGLE

TEXT STRING

ALIGNMENT BYTES

The structure of the hot rectangle component depends
on the item chosen in the Message Type pop-up menu
in the Resorcerer editing window below, which sets the
TYPE OF DATA field. The pop-up menu items
specify the format of the help balloon messages. The
available formats are as follows:

STRUCTURE OF HOT RECTANGLE COMPONENT

Use these strings
Use 'PICT' resources
Use 'STR#' resources
Used styled text resources
Use 'STR ' resources
Skip missing item

RESORCERER 'hrct' RESOURCE EDITING WINDOW

The 'hwin' (window help) resource is used to associate the help balloons defined in an 'hrct' resource with
a particular window. All 'hrct' resources must have resource IDs equal to or greater than 128. Fig 14
shows an 'hwin' resource being created using Resorcerer.

4-22 Version 1.0 Introduction to Windows

FIG 14 - CREATING AN 'hwin' RESOURCE USING RESORCERER

HELP MANAGER VERSION

OPTIONS

WINDOW COMPONENT COUNT

RESOURCE ID OF 'hrct' OR 'hdlg' RESOURCE

TYPE OF ASSOCIATED RESOURCE ('hrct' OR 'hdlg')

LENGTH OF COMPARISON STRING,
OR A windowKind VALUE

ALIGNMENT BYTES

WINDOW TITLE STRING FOR COMPARISON

RESOURCE ID OF 'hrct' OR 'hdlg' RESOURCE

TYPE OF ASSOCIATED RESOURCE ('hrct' OR 'hdlg')

LENGTH OF COMPARISON STRING,
OR A windowKind VALUE

ALIGNMENT BYTES

WINDOW TITLE STRING FOR COMPARISON

Help Manager version

The number of window components defined in the rest of the resource.

Header component

One option only. (0, 1, 2, and 3, below, are irrelevant to 'hwin' resources.) 4 must be
set to On to match windows containing a specified number of sequential characters
starting with any character in the window title. If 4 is Off, the Help Manager matches
characters starting with the first character of the window title.

Specifies the type of the associated resource ('hrct' for static windows).

Specifies the resource ID of the associated 'hrct' resource that specifies
the help messages for the window.

The 'hwin' resource identifies windows by their titles or by the value in the
windowKind field of the window's colour window structure. Accordingly, your
window's colour window structure must specify either a title or a windowKind
value that adequately distinguishes it from other windows. (Note that
windowKind values of 0, 1, and 3 to 7 are reserved by the system and that
dialog and alert boxes have 2 assigned to their windowKind field. Your ability
to distinguish between untitled dialog and alert boxes is thus somewhat
limited.)

STRUCTURE OF A COMPILED 'hwin' RESOURCE

Specifies the window title string. If the previous field is a positive
integer, this field consists of characters that the Help Manager uses to
match this component to a window by the window's title. If the previous
field is negative, this is an empty string.

Last window item component
First window item component

You can list all of your windows within one 'hwin' resource, or you can create
separate 'hwin' resources for your separate windows. You need separate 'hwin'
resources for windows that require different options (for example, one requires
a precise string match, another matches the string anywhere in the title.) RESORCERER 'hwin' RESOURCE EDITING WINDOW

Specifies the length of the comparison string or a windowKind value. If the
integer of this element is positive, this is the number of characters used for
matching this component to a window's title. If the integer is negative, this
is the value used for matching this component to a window by the value in
the windowKind field of the window's colour window structure. (See below.)

Introduction to Windows Version 1.0 4-23

Main Window Manager Constants, Data Types, and Functions

Constants

Window Types
kWindowDocumentProc = 1024 Document windows
kWindowGrowDocumentProc = 1025
kWindowVertZoomDocumentProc = 1026
kWindowVertZoomGrowDocumentProc = 1027
kWindowHorizZoomDocumentProc = 1028
kWindowHorizZoomGrowDocumentProc = 1029
kWindowFullZoomDocumentProc = 1030
kWindowFullZoomGrowDocumentProc = 1031
kWindowPlainDialogProc = 1040 Dialogs and Alerts
kWindowShadowDialogProc = 1041
kWindowModalDialogProc = 1042
kWindowMovableModalDialogProc = 1043
kWindowAlertProc = 1044
kWindowMovableAlertProc = 1045
kWindowMovableModalGrowProc = 1046
kWindowFloatProc = 1057 Floating windows
kWindowFloatGrowProc = 1059
kWindowFloatVertZoomProc = 1061
kWindowFloatVertZoomGrowProc = 1063
kWindowFloatHorizZoomProc = 1065
kWindowFloatHorizZoomGrowProc = 1067
kWindowFloatFullZoomProc = 1069
kWindowFloatFullZoomGrowProc = 1071
kWindowFloatSideProc = 1073
kWindowFloatSideGrowProc = 1075
kWindowFloatSideVertZoomProc = 1077
kWindowFloatSideVertZoomGrowProc = 1079
kWindowFloatSideHorizZoomProc = 1081
kWindowFloatSideHorizZoomGrowProc = 1083
kWindowFloatSideFullZoomProc = 1085
kWindowFloatSideFullZoomGrowProc = 1087

Window Kind
kDialogWindowKind = 2
kApplicationWindowKind = 8

Window Part Codes Returned by FindWindow
inDesk = 0
inNoWindow = 0
inMenuBar = 1
inSysWindow = 2
inContent = 3
inDrag = 4
inGrow = 5
inGoAway = 6
inZoomIn = 7
inZoomOut = 8
inCollapseBox = 11
inProxyIcon = 12

Regions Codes Passed to GetWindowRegion
kWindowTitleBarRgn = 0
kWindowTitleTextRgn = 1
kWindowCloseBoxRgn = 2
kWindowZoomBoxRgn = 3
kWindowDragRgn = 5
kWindowGrowRgn = 6
kWindowCollapseBoxRgn = 7
kWindowStructureRgn = 32
kWindowContentRgn = 33

4-24 Version 1.0 Introduction to Windows

kWindowUpdateRgn = 34
kWindowGlobalPortRgn = 40

Options For ScrollWindowRect and ScrollWindowRegion
kScrollWindowNoOptions = 0
kScrollWindowInvalidate = (1L << 0) Add exposed area to window’s update region.
KScrollWindowEraseToPortBackground = (1L << 1) Erase exposed area using background colour/
 pattern of the window’s grafport.

Data Types
typedef struct OpaqueWindowPtr* WindowPtr;
typedef WindowPtr WindowRef;
typedef SInt16 WindowPartCode;
typedef UInt16 WindowRegionCode;
typedef UInt32 OptionBits;
typedef OptionBits ScrollWindowOptions;

Functions

Creating Windows
WindowRef GetNewCWindow(short windowID,void *wStorage,WindowRef behind);
WindowRef NewCWindow(void *wStorage,const Rect *boundsRect,ConstStr255Param title,Boolean
 visible,short procID,WindowRef behind,Boolean goAwayFlag,long refCon);

Naming Windows
void GetWTitle(WindowRef theWindow,Str255 title);
void SetWTitle(WindowRef theWindow,ConstStr255Param title);
OSStatus CopyWindowTitleAsCFString(WindowRef inWindow,CFStringRef *outString);
OSStatus SetWindowTitleWithCFString(WindowRef inWindow,CFStringRef inString);

Displaying Windows
Boolean IsWindowVisible(WindowRef window);
void ShowWindow(WindowRef theWindow);
void HideWindow(WindowRef theWindow);
void ShowHide(WindowRef theWindow,Boolean showFlag);
Boolean IsWindowHilited(WindowRef window);
void HiliteWindow(WindowRef theWindow,Boolean fHilite);
void SelectWindow(WindowRef theWindow);
void BringToFront(WindowRef theWindow);
void SendBehind(WindowRef theWindow,WindowRef behindWindow);
void DrawGrowIcon(WindowRef theWindow);

Moving Windows
void MoveWindow(WindowRef theWindow,short hGlobal,short vGlobal,Boolean front);
void DragWindow(WindowRef theWindow,Point startPt,const Rect *boundsRect);

Resizing Windows
long GrowWindow(WindowRef theWindow,Point startPt,const Rect *bBox);
void SizeWindow(WindowRef theWindow,short w,short h,Boolean fUpdate);
Boolean ResizeWindow(WindowRef window,Point startPoint,const Rect *sizeConstraints,
 Rect *newContentRect);

Zooming Windows
Boolean TrackBox(WindowRef theWindow,Point thePt,short partCode);
void ZoomWindow(WindowRef theWindow,short partCode,Boolean front);
OSStatus ZoomWindowIdeal(WindowRef window,SInt16 partCode,Point *ioIdealSize);
Boolean IsWindowInStandardState(WindowRef window,Point *idealSize,Rect *idealStandardState);
OSStatus SetWindowIdealUserState(WindowRef window,Rect *userState);
OSStatus GetWindowIdealUserState(WindowRef window,Rect *userState);

Deallocating Windows
Boolean TrackGoAway(WindowRef theWindow,Point thePt);
void DisposeWindow(WindowRef theWindow);

Collapsing Windows
Boolean IsWindowCollapsable(WindowRef inWindow);

Introduction to Windows Version 1.0 4-25

Boolean IsWindowCollapsed(WindowRef inWindow);
OSStatus CollapseWindow(WindowRef inWindow,Boolean inCollapseIt);
OSStatus CollapseAllWindows(Boolean inCollapseEm);

Window Kind
short GetWindowKind(WindowRef window);
void SetWindowKind(WindowRef window,short kind);

Window Regions
OSStatus GetWindowRegion(WindowRef inWindow,WindowRegionCode inRegionCode,
 RgnHandle ioWinRgn)

Window User State and Standard State
Rect* GetWindowStandardState(WindowRef window,Rect *rect);
Rect* GetWindowUserState(WindowRef window,Rect *rect);
void SetWindowStandardState(WindowRef window,const Rect *rect);
void SetWindowUserState(WindowRef window,const Rect *rect);
Boolean IsWindowInStandardState(WindowRef window,Point *idealSize,Rect idealStandardState);

Getting Available Window Positioning Bounds
OSStatus GetAvailableWindowPositioningBounds(GDHandle inDevice,Rect *availableRect);

Maintaining the Update Region
void BeginUpdate(WindowRef theWindow);
void EndUpdate(WindowRef theWindow);
Boolean IsWindowUpdatePending(WindowRef window);
OSStatus InvalWindowRgn(WindowRef window,RgnHandle region);
OSStatus InvalWindowRect(WindowRef window, const Rect *bounds);
OSStatus ValidWindowRgn(WindowRef window,RgnHandle region);
OSStatus ValidWindowRect(WindowRef window, const Rect *bounds);

Retrieving Mouse Information
short FindWindow(Point thePoint,WindowRef *theWindow);
WindowRef FrontWindow(void);

Window Reference Constant, Variant, and Picture
long GetWRefCon(WindowRef theWindow);
void SetWRefCon(WindowRef theWindow,long data);
short GetWVariant(WindowRef theWindow);
void SetWindowPic(WindowRef theWindow,PicHandle pic);
PicHandle GetWindowPic(WindowRef theWindow);

Window List
WindowRef GetWindowList(void);
WindowRef GetNextWindow(WindowRef window);

Window's Graphics Port
CGrafPtr GetWindowPort(WindowRef window);
void SetPortWindowPort(WindowRef window);
WindowRef GetWindowFromPort(CGrafPtr port);
Rect* GetWindowPortBounds(WindowRef window,Rect *bounds);

Gray Region
RgnHandle GetGrayRgn(void);

Scrolling Pixels in the Window Content Region
OSStatus ScrollWindowRect(WindowRef window,const Rect *scrollRect,SInt16 hPixels,
 SInt16 vPixels,ScrollWindowOptions options,RgnHandle outExposedRgn);
OSStatus ScrollWindowRegion(WindowRef window,RgnHandle scrollRgn,
 SInt16 hPixels,vPixels,ScrollWindowOptions options,RgnHandle outExposedRgn);

4-26 Version 1.0 Introduction to Windows

Demonstration Program Windows1 Listing
// ***
// Windows1.c CLASSIC EVENT MODEL
// ***
//
// This program:
//
// • Allows the user to open any number of kWindowFullZoomGrowDocumentProc windows, up to the
// maximum specified by the constant assigned to the symbolic name kMaxWindows, using the
// File menu Open Command or its keyboard equivalent.
//
// • Allows the user to close opened windows using the close box/button, the File menu Close
// command or the Close command's keyboard equivalent.
//
// • Adds menu items representing each window to a Windows menu as each window is opened.
// (A keyboard equivalent is included in each menu item for windows 1 to 9.)
//
// • Deletes menu items from the Windows menu as each window is closed.
//
// • Fills each window with a plain colour pattern as a means of proving, for demonstration
// purposes, the window update process.
//
// • Facilitates activation of a window by mouse selection.
//
// • Facilitates activation of a window by Windows menu selection.
//
// • Correctly performs all dragging, zooming and sizing operations.
//
// • On Mac OS 8/9, demonstrates the provision of balloon help for static windows.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple/Application, File, Edit and Windows
// menus, (preload non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • A 'STR#' resource containing error strings and the window title (purgeable).
//
// • An 'hrct' resource and an 'hwin' resource for balloon help (both purgeable).
//
// • Ten 'ppat' (pixel pattern) resources (purgeable), which are used to draw a plain colour
// pattern in the windows.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iNew 1
#define iClose 4
#define iQuit 12
#define mWindows 131
#define rNewWindow 128
#define rStringList 128

Introduction to Windows Version 1.0 4-27

#define sUntitled 1
#define eMaxWindows 2
#define eFailWindow 4
#define eFailMenus 5
#define eFailMemory 6
#define rPixelPattern 128
#define kMaxWindows 10
#define kScrollBarWidth 15
#define MAX_UINT32 0xFFFFFFFF
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define topLeft(r) (((Point *) &(r))[0])

// …… global variables

Boolean gRunningOnX = false;
Boolean gDone;
SInt32 gUntitledWindowNumber = 0;
SInt32 gCurrentNumberOfWindows = 0;
WindowRef gWindowRefArray[kMaxWindows + 2];

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void eventLoop (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doUpdateWindow (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowRef,Boolean);
void doOSEvent (EventRecord *);
void doMenuChoice (SInt32);
void doFileMenu (MenuItemIndex);
void doWindowsMenu (MenuItemIndex);
void doNewWindow (void);
void doCloseWindow (void);
void doInvalidateScrollBarArea (WindowRef);
void doConcatPStrings (Str255,Str255);
void doErrorAlert (SInt16);
Boolean eventFilter (DialogPtr,EventRecord *,SInt16 *);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 SInt16 a;

 // …… do preliminaries

 doPreliminaries();

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 doErrorAlert(eFailMenus);
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)

4-28 Version 1.0 Introduction to Windows

 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 }

 gRunningOnX = true;
 }

 // ……… initialize window reference array

 for(a=0;a<kMaxWindows+2;a++)
 gWindowRefArray[a] = NULL;

 // ……… enter eventLoop

 eventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(224);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// *** eventLoop

void eventLoop(void)
{
 EventRecord eventStructure;

 gDone = false;

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&eventStructure,MAX_UINT32,NULL))
 doEvents(&eventStructure);

Introduction to Windows Version 1.0 4-29

 }
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case mouseDown:
 doMouseDown(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 doMenuChoice(MenuEvent(eventStrucPtr));
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 WindowPartCode partCode, zoomPart;
 BitMap screenBits;
 Rect constraintRect, mainScreenRect;
 Point standardStateHeightAndWidth;

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case inMenuBar:
 doMenuChoice(MenuSelect(eventStrucPtr->where));
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;

 case inGoAway:
 if(TrackGoAway(windowRef,eventStrucPtr->where) == true)
 doCloseWindow();
 break;

 case inGrow:

4-30 Version 1.0 Introduction to Windows

 constraintRect.top = 75;
 constraintRect.left = 205;
 constraintRect.bottom = constraintRect.right = 32767;
 doInvalidateScrollBarArea(windowRef);
 ResizeWindow(windowRef,eventStrucPtr->where,&constraintRect,NULL);
 doInvalidateScrollBarArea(windowRef);
 break;

 case inZoomIn:
 case inZoomOut:
 mainScreenRect = GetQDGlobalsScreenBits(&screenBits)->bounds;
 standardStateHeightAndWidth.v = mainScreenRect.bottom;
 standardStateHeightAndWidth.h = 460;

 if(IsWindowInStandardState(windowRef,&standardStateHeightAndWidth,NULL))
 zoomPart = inZoomIn;
 else
 zoomPart = inZoomOut;

 if(TrackBox(windowRef,eventStrucPtr->where,partCode))
 ZoomWindowIdeal(windowRef,zoomPart,&standardStateHeightAndWidth);
 break;
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;

 windowRef = (WindowRef) eventStrucPtr->message;

 BeginUpdate(windowRef);

 SetPortWindowPort(windowRef);
 doUpdateWindow(eventStrucPtr);

 EndUpdate(windowRef);
}

// ** doUpdateWindow

void doUpdateWindow(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 RgnHandle visibleRegionHdl;
 Rect theRect;
 SInt32 windowRefCon;
 PixPatHandle pixpatHdl;
 RGBColor whiteColour = { 0xFFFF,0xFFFF,0xFFFF };
 SInt16 a;

 windowRef = (WindowRef) eventStrucPtr->message;

 visibleRegionHdl = NewRgn();
 GetPortVisibleRegion(GetWindowPort(windowRef),visibleRegionHdl);
 EraseRgn(visibleRegionHdl);
 DisposeRgn(visibleRegionHdl);

 GetWindowPortBounds(windowRef,&theRect);
 theRect.right -= kScrollBarWidth;
 theRect.bottom -= kScrollBarWidth;

 windowRefCon = GetWRefCon(windowRef);
 pixpatHdl = GetPixPat(rPixelPattern + windowRefCon);
 FillCRect(&theRect,pixpatHdl);
 DisposePixPat(pixpatHdl);

Introduction to Windows Version 1.0 4-31

 DrawGrowIcon(windowRef);

 RGBForeColor(&whiteColour);
 TextSize(10);

 if(!gRunningOnX)
 {
 for(a=0;a<2;a++)
 {
 SetRect(&theRect,a*90+10,10,a*90+90,33);
 FrameRect(&theRect);
 MoveTo(a*90+18,25);

 DrawString("\pHot Rectangle");
 }
 }
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 Boolean becomingActive;

 windowRef = (WindowRef) eventStrucPtr->message;

 becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);

 doActivateWindow(windowRef,becomingActive);
}

// ** doActivateWindow

void doActivateWindow(WindowRef windowRef,Boolean becomingActive)
{
 MenuRef windowsMenu;
 SInt16 menuItem, a = 1;

 windowsMenu = GetMenuRef(mWindows);

 while(gWindowRefArray[a] != windowRef)
 a++;
 menuItem = a;

 if(becomingActive)
 CheckMenuItem(windowsMenu,menuItem,true);
 else
 CheckMenuItem(windowsMenu,menuItem,false);

 DrawGrowIcon(windowRef);
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 SetThemeCursor(kThemeArrowCursor);
 break;
 }
}

// ** doMenuChoice

void doMenuChoice(SInt32 menuChoice)

4-32 Version 1.0 Introduction to Windows

{
 MenuID menuID;
 MenuItemIndex menuItem;

 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 doFileMenu(menuItem);
 break;

 case mWindows:
 doWindowsMenu(menuItem);
 break;
 }

 HiliteMenu(0);
}

// ** doFileMenu

void doFileMenu(MenuItemIndex menuItem)
{
 switch(menuItem)
 {
 case iNew:
 doNewWindow();
 break;

 case iClose:
 doCloseWindow();
 break;

 case iQuit:
 gDone = true;
 break;
 }
}

// *** doWindowsMenu

void doWindowsMenu(MenuItemIndex menuItem)
{
 WindowRef windowRef;

 windowRef = gWindowRefArray[menuItem];
 SelectWindow(windowRef);
}

// *** doNewWindow

void doNewWindow(void)
{
 WindowRef windowRef;
 Str255 untitledString;
 Str255 numberAsString = "\p1";
 Rect availableBoundsRect, portRect;
 SInt16 windowHeight;
 MenuRef windowsMenu;

Introduction to Windows Version 1.0 4-33

 if(gCurrentNumberOfWindows == kMaxWindows)
 {
 doErrorAlert(eMaxWindows);
 return;
 }

 if(!(windowRef = GetNewCWindow(rNewWindow,NULL,(WindowRef) -1)))
 doErrorAlert(eFailWindow);

 GetIndString(untitledString,rStringList,sUntitled);
 gUntitledWindowNumber += 1;
 if(gUntitledWindowNumber > 1)
 {
 NumToString(gUntitledWindowNumber,numberAsString);
 doConcatPStrings(untitledString,numberAsString);
 }

 SetWTitle(windowRef,untitledString);

 GetAvailableWindowPositioningBounds(GetMainDevice(),&availableBoundsRect);
 GetWindowPortBounds(windowRef,&portRect);
 SetPortWindowPort(windowRef);
 LocalToGlobal(&topLeft(portRect));
 windowHeight = (availableBoundsRect.bottom - portRect.top) - 3;
 if(!gRunningOnX)
 windowHeight -= 27;
 SizeWindow(windowRef,460,windowHeight,false);

 ShowWindow(windowRef);

 if(gUntitledWindowNumber < 10)
 {
 doConcatPStrings(untitledString,"\p/");
 doConcatPStrings(untitledString,numberAsString);
 }
 windowsMenu = GetMenuRef(mWindows);
 InsertMenuItem(windowsMenu,untitledString,CountMenuItems(windowsMenu));

 SetWRefCon(windowRef,gCurrentNumberOfWindows);

 gCurrentNumberOfWindows ++;
 gWindowRefArray[gCurrentNumberOfWindows] = windowRef;

 if(gCurrentNumberOfWindows == 1)
 {
 EnableMenuItem(GetMenuRef(mFile),iClose);
 EnableMenuItem(GetMenuRef(mWindows),0);
 DrawMenuBar();
 }
}

// *** doCloseWindow

void doCloseWindow(void)
{
 WindowRef windowRef;
 MenuRef windowsMenu;
 SInt16 a = 1;

 windowRef = FrontWindow();
 DisposeWindow(windowRef);
 gCurrentNumberOfWindows --;

 windowsMenu = GetMenuRef(mWindows);
 while(gWindowRefArray[a] != windowRef)
 a++;
 gWindowRefArray[a] = NULL;
 DeleteMenuItem(windowsMenu,a);

4-34 Version 1.0 Introduction to Windows

 for(a=1;a<kMaxWindows+1;a++)
 {
 if(gWindowRefArray[a] == NULL)
 {
 gWindowRefArray[a] = gWindowRefArray[a+1];
 gWindowRefArray[a+1] = NULL;
 }
 }

 if(gCurrentNumberOfWindows == 0)
 {
 DisableMenuItem(GetMenuRef(mFile),iClose);
 DisableMenuItem(GetMenuRef(mWindows),0);
 DrawMenuBar();
 }
}

// *** doInvalidateScrollBarArea

void doInvalidateScrollBarArea(WindowRef windowRef)
{
 Rect tempRect;

 SetPortWindowPort(windowRef);

 GetWindowPortBounds(windowRef,&tempRect);
 tempRect.left = tempRect.right - kScrollBarWidth;
 InvalWindowRect(windowRef,&tempRect);

 GetWindowPortBounds(windowRef,&tempRect);
 tempRect.top = tempRect.bottom - kScrollBarWidth;
 InvalWindowRect(windowRef,&tempRect);
}

// ** doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{
 SInt16 appendLength;

 appendLength = MIN(appendString[0],255 - targetString[0]);

 if(appendLength > 0)
 {
 BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
 targetString[0] += appendLength;
 }
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorType)
{
 AlertStdAlertParamRec paramRec;
 ModalFilterUPP eventFilterUPP;
 Str255 labelText;
 Str255 narrativeText;
 SInt16 itemHit;

 eventFilterUPP = NewModalFilterUPP((ModalFilterProcPtr) eventFilter);

 paramRec.movable = true;
 paramRec.helpButton = false;
 paramRec.filterProc = eventFilterUPP;
 paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
 paramRec.cancelText = NULL;
 paramRec.otherText = NULL;
 paramRec.defaultButton = kAlertStdAlertOKButton;

Introduction to Windows Version 1.0 4-35

 paramRec.cancelButton = 0;
 paramRec.position = kWindowAlertPositionMainScreen;

 GetIndString(labelText,rStringList,errorType);

 if(errorType == eMaxWindows)
 {
 GetIndString(narrativeText,rStringList,errorType + 1);
 StandardAlert(kAlertCautionAlert,labelText,narrativeText,¶mRec,&itemHit);
 DisposeModalFilterUPP(eventFilterUPP);
 }
 else
 {
 StandardAlert(kAlertStopAlert,labelText,0,¶mRec,&itemHit);
 ExitToShell();
 }
}

// *** eventFilter

Boolean eventFilter(DialogPtr dialogPtr,EventRecord *eventStrucPtr,SInt16 *itemHit)
{
 Boolean handledEvent = false;

 if((eventStrucPtr->what == updateEvt) &&
 ((WindowRef) eventStrucPtr->message != GetDialogWindow(dialogPtr)))
 {
 doUpdate(eventStrucPtr);
 }

 return handledEvent;
}

// ***

4-36 Version 1.0 Introduction to Windows

Demonstration Program Windows1 Comments
When this program is run, the user should:

• Open and close windows using both the Open and Close commands from the File menu and their keyboard
equivalents, noting that, whenever a window is opened or closed, a menu item representing that window
is added to, or deleted from, the Windows menu.

• Note that keyboard equivalents are added to the menu items in the Windows menu for the first nine
windows opened.

• Activate individual windows by both clicking the content region and pressing the keyboard equivalent
for the window.

• Send the application to the background and bring it to the foreground, noting window
activation/deactivation.

• Zoom, close, and resize windows using the zoom box/button, close box/button and size box/resize
control, noting window updating and activation.

• On Mac OS X, note that, when a window is zoomed to the standard state, the zoom is constrained by the
current height of the Dock.

• On Mac OS 8/9, choose Show Balloons from the Help menu and move the cursor over the hot rectangles in
the frontmost window.

If an attempt is made to open more than 10 windows, a movable modal alert appears.

defines
The first nine #defines establish constants representing menu IDs and resources, and window and menu bar
resources. The next six establish constants representing the resource ID of a 'STR#' resource and the
various strings in that resource. rPixelPattern represents the resource ID of the first of ten 'ppat'
(pixel pattern) resources. kMaxWindows controls the maximum number of windows allowed to be open at one
time.

MAX_UINT32 is defined as the maximum possible UInt32 value. (This will be assigned to WaitNextEvent's
sleep parameter.) The two fairly common macros which follow are required by, respectively, the string
concatenation function doConcatPStrings and the window creation function doNewWindow.

Global Variables
The global variable gRunningOnX will be set to true if the program is running on Mac OS X. gDone, when
set to true, causes the main event loop to be exited and the program to terminate.

gUntitledWindowNumber keeps track of the window numbers to be inserted into the window's title bar. This
number is incremented each time a new window is opened. gCurrentNumberOfWindows keeps track of how many
windows are open at any one time.

In this program, CreateStandardWindowMenu is not used to create the Window menu. The Window menu is
created in the same way as the other menus, and managed ny the program. gWindowRefArray[] is central to
the matter of maintaining an association between item numbers in the Window menu and the windows to which
they refer, regardless of how many windows are opened and closed, and in what sequence. When, for
example, a Window menu item is chosen, the program must be able to locate the window object for the window
represented by that menu item number so as to activate the correct window.

The strategy adopted by this program is to assign the references for each opened window to the elements of
gWindowRefArray[], starting with gWindowRefArray[1] and leaving gWindowRefArray[0] unused. If, for
example, six windows are opened in sequence, gWindowRefArray[1] to gWindowRefArray[6] are assigned the
references to the window objects for each of those six windows. (At the same time, menu items
representing each of those windows are progressively added to the Window menu.)

If, say, the third window opened is then closed, gWindowRefArray[3] is set to NULL and the window object
references in gWindowRefArray[4] to gWindowRefArray[6] are moved down in the array to occupy
gWindowRefArray[3] to gWindowRefArray[5]. Since the Window menu item for the third window is deleted from
the menu when the window is closed, there remains five windows and their associated menu items, the
"compaction" of the array having maintained a direct relationship between the number of the array element
to which each window reference is assigned and the number of the menu item for that window.

Introduction to Windows Version 1.0 4-37

main
The first action is to call doPreliminaries, which performs certain preliminary actions common to most
applications.

The next block sets up the menus. Note that error handling involving the invocation of alerts is
introduced in this program. If an error occurs, the function doErrorAlert is called to display either a
stop or caution movable modal alert advising of the nature of the error.

In the final three lines, gWindowRefArray[] is initialised and the main event loop is entered.

doPreliminaries
Note that MoreMasterPointers is called with 224 passed in the inCount parameter to provide sufficient
master pointers for this program.

eventLoop
eventLoop will exit when gDone is set to true, which occurs when the user selects Quit from the File menu.
(As an aside, note that the sleep parameter in the WaitNextEvent call is set to MAX_UINT32, which is
defined as the maximum possible UInt32 value.)

doEvents
doEvents switches according to the event type received.

mouseDown, updateEvt, activateEvt and osEvt events are of significance to the windows aspects of this
demonstration. keyDown events are significant only with regard to File and Window menu keyboard
equivalents.

doMouseDown
doMouseDown continues the processing of mouseDown events, switching according to the part code.

The inContent case results in a call to SelectWindow if the window in which the mouse-down occurred is not
the front window. SelectWindow:

• Unhighlights the currently active window, brings the specified window to the front and highlights it.

• Generates activate events for the two windows.

• Moves the previously active window to a position immediately behind the specified window.

The inDrag case results in a call to DragWindow, which retains control until the user releases the mouse
button. The third parameter in the DragWindow call establishes the limits, in global screen coordinates,
within which the user is allowed to drag the window. In Carbon, NULL may be passed in this parameter.
This has the effect of setting the third parameter to the bounding rectangle of the desktop region (also
known as the "gray region").

The inGoAway case results in a call to TrackGoAway, which retains control until the user releases the
mouse button. If the pointer is still within the close box/button when the mouse button is released, the
function doCloseWindow is called.

At the inGrow case, the first three lines establish the resizing constraints. The top and left fields of
the Rect variable constraintRect are assigned values representing the minimum height and width to which
the window may be resized. The bottom and right fields, which establish the maximum height and width, are
assigned the maximum possible SInt16 value. (Since the mouse cursor cannot be moved beyond the edges of
the screen (or screens in a multi-monitor system), these values mean that the window can be resized larger
to the limits of mouse cursor movement.)

ResizeWindow retains control until the user releases the mouse button. When the mouse button is released,
ResizeWindow redraws the window frame (that is, all but the content region) in the new size and, where
window height and/or width has been increased, adds the newly-exposed areas of the content region to
update region (on Mac OS 8/9). (Note that, in Carbon, the fourth (newContentRect) parameter may be set to
NULL if the new dimension of the window's content region is not required.)

The call to ResizeWindow is bracketed by two calls to the function doInvalidateScrollBarArea. In this
program, scroll bars are not used but it has been decided to, firstly, limit update drawing to the
window's content region less the areas normally occupied by scroll bars and, secondly, to use DrawGrowIcon
to draw the draw scroll bar delimiting lines. (For Mac OS 8/9, this is the usual practice for windows
with a size box but no scroll bars. The DrawGrowIcon call is ignored on Mac OS X.)

4-38 Version 1.0 Introduction to Windows

The first call to doInvalidateScrollBarArea is necessary to cater for the case where the window is resized
larger. If this call is not made, the scroll bar areas prior to the resize will not be redrawn by the
window updating function unless these areas are programmatically added to the new update region created by
the Window Manager as a result of the resizing action.

The second call to doInvalidateScrollBarArea is necessary to cater for the case where the window is
resized smaller. This call works in conjunction with the EraseRgn call in the function doUpdateWindow.
The call to doInvalidateScrollBarArea results in an update event being generated, and the call to EraseRgn
in the doUpdateWindow function causes the update region (that is, in this case, the scroll bar areas) to
be erased. (Remember that, on Mac OS 8/9, between the calls to BeginUpdate and EndUpdate, the visible
region equates to the update region and that QuickDraw limits its drawing to the update region.)

At the inZoomIn/inZoomOut case, the first action is to assign the desired height and width of the
windows's standard state content region to the fields of a Point variable. This variable is then passed
in the second parameter of a call to IsWindowInStandardState, which sets the variable zoomPart to either
true or false depending on whether the window is currently in the standard state or the user state.
TrackBox is then called, taking control until the user releases the mouse button. If the mouse button is
released while the pointer is still within the zoom box, ZoomWindowIdeal is called to zoom the window in
accordance with human interface guidelines. The second parameter tells ZoomWindow whether to zoom out to
the standard state or in to the user state.

doUpdate
On Mac OS 8/9 and Mac OS X, an update event will be received:

• When the window is created.

• When the window is resized larger.

• When the window is resized smaller (because of calls to InvalWindowRect in the function
doInvalidateScrollBarArea).

• When the window is zoomed.

On Mac OS 8/9, update events will also be received when a window has a non-empty update region.

doUpdate attends to basic window updating. On Mac OS 8/9, the call to BeginUpdate clips the visible
region to the intersection of the visible region and the update region. The visible region is now a sort
of proxy for the update region. The graphics port is then set before the function doUpdateWindow is
called to redraw the content region. On Mac OS 8/9, the EndUpdate call restores the window's true visible
region. (The calls to BeginUpdate and EndUpdate are ignored on Mac OS X.)

doUpdateWindow
doUpdateWindow is concerned with redrawing the window's contents less the scroll bar areas.

The first action is to retrieve the window object reference from the message field of the event structure.

The next block retrieves the handle to the window's visible region, following which EraseRgn is called for
reasons explained at doMouseDown, above.

The window's graphics port's bounding rectangle is then retrieved, following which the right and bottom
fields are adjusted to exclude the scroll bar areas. The next four lines fill this rectangle with a plain
colour pattern provided by a 'ppat' resource, simply as a means of proving the correctness of the window
updating process.

Note the call to GetWRefCon, which retrieves the window's reference constant stored in the window object.
As will be seen, whenever a new window is opened, a value between 1 and kMaxWindows is stored as a
reference constant in the window object. In this function, this is just a convenient number to be added
to the base resource ID (128) in the single parameter of the GetPixPat call, ensuring that FillCRect has a
different pixel pattern to draw in each window.

The call to DrawGrowIcon draws the scroll bar delimiting lines (on Mac OS 8/9). Note that this call, the
preceding EraseRgn call, and the calls to doInvalidateScrollbarArea are made for "cosmetic" purposes only
and would not be required if the window contained scroll bars.

If the program is running on Mac OS 8/9, the remaining lines draw two rectangles and some text in the
windows to visually represent to the user the otherwise invisible "hot rectangles" defined in the 'hrct'
resource and associated with the window by the 'hwin' resource. When Show Balloons is chosen from the
Help menu, the help balloons will be invoked when the cursor moves over these rectangles.

Introduction to Windows Version 1.0 4-39

doActivate
doActivate attends to those aspects of window activation not handled by the Window Manager.

The modifiers field of the event structure is tested to determine whether the window in question is being
activated or deactivated. The result of this test is passed as a parameter in the call to the function
doActivateWindow.

doActivateWindow
In this demonstration, the remaining actions carried out in response to an activateEvt are limited to
placing/removing checkmarks in/from items in the Window menu.

The first step is to associate the received WindowRef with its item number in the Window menu. At the
while loop, the array maintained for that purpose is searched until a match is found. The array element
number at which the match is found correlates directly with the menu item number; accordingly, this is
assigned to the variable menuItem, which is used in the following CheckMenuItem calls. Whether the
checkmark is added or removed depends on whether the window in question is being activated or deactivated,
a condition passed to the call to doActivateWindow as its second parameter.

The call to DrawGrowIcon ensures that the scroll bar area delimiting lines will be drawn in gray when the
window is deactivated (on Mac OS 8/9).

doOSEvent
doOSEvent handles operating system events. In this demonstration, action is taken only in the case of
resume events. If the event is a resume event, the cursor is set to the arrow shape.

doMenuChoice and doFileMenu
doMenuChoice switches according to the menu choices of the user. doFileMenu switches according to the
File menu item choice of the user.

doWindowsMenu
doWindowsMenu takes the item number of the selected Window menu item and, since this equates to the number
of the array element in which the associated window object reference is stored, extracts the window object
reference associated with the menu item. This is used in the call to SelectWindow, which generates the
activateEvts required to activate and deactivate the appropriate windows.

doNewWindow
doNewWindow opens a new window and attends to associated tasks.

In the first block, if the current number of open windows equals the maximum allowable specified by
kMaxWindows, a caution movable modal alert is called up via the function doErrorAlert (with the string
represented by eMaxWindows displayed) and an immediate return is executed when the user clicks the alert's
OK button.

At the next block, the new window is created by the call to GetNewCWindow. The third parameter specifies
that the window is to be opened in front of all other windows. If the call is not successful for any
reason, a stop movable modal alert is called up via the function doErrorAlert (with the string represented
by eFailWindow displayed) and the program terminates when the user clicks the alert's OK button.

The next seven lines create the string which will be used to set the window's title. The code reflects
the fact that Aqua Human Interface Guidelines require that a number only be appended to "untitled" for the
second and later windows. Accordingly, concatenating a number to the string "untitled" is not effected
for the first window created.

GetIndString retrieves the string "untitled " from the specified 'STR#' resource and the global variable
which keeps track of the numbers for the title bar is incremented. If this is not the first window to be
created, NumToString converts that number to a Pascal string and this string is concatenated to the
"untitled " string. The SetWTitle call then sets the window's title.

The next block sets adjusts the size of the window before it is displayed. The width is set to 460 pixels
and the height is adjusted according to the available screen real estate.

The call to GetAvailableWindowPositioningBounds returns, in global coordinates, the available real estate
on the main screen (device). This excludes the menu bar and, on Mac OS X, the Dock. The call to
SetPortWindowPort sets the window's graphics port as the current port, a necessary precursor to the call
to LocalToGlobal, which converts the top-left (local) coordinates of the port rectangle to global
coordinates. The height of the rectangle returned by GetAvailableWindowPositioningBounds is then reduced
by the distance of the top of the port rectangle from the top of the screen, and then further reduced by

4-40 Version 1.0 Introduction to Windows

three. On Mac OS X, this will cause the bottom of the window to be just above the top of the Dock. If
the program is running on Mac OS 8/9, the height is reduced by a further 27 pixels to accommodate the
height of the control strip. The call to SizeWindow sets the window's size. (The window's location is
determined by the positioning specification in the window's 'WIND' resource.)

The ShowWindow call makes the window visible.

The next block adds the metacharacter \ and the window number to the string used to set the window title
(thus setting up the Command key equivalent) before InsertMenuItem is called to create a new menu item to
the Window menu. Note that the Command-key equivalent is only added for the first nine windows opened.)

The SetWRefCon call stores the value represented by gCurrentNumberOfWindows in the window object as the
window's reference constant. As previously stated, in this demonstration this is used to select a pixel
pattern to draw in each window's content region.

At the next two lines, the variable which keeps track of the current number of opened windows is
incremented and the appropriate element of the window reference array is assigned the reference to newly
opened window's window object.

The last block enables the Window menu and the Close item in the File menu when the first window is
opened.

doCloseWindow
The function doCloseWindow closes an open window and attends to associated tasks.

At the first two lines, a reference to the frontmost window's window object is retrieved and passed in the
call to DisposeWindow. DisposeWindow removes the window from the screen, removes it from the window list,
and discards all its data storage. With the window closed, the global variable that keeps track of the
number of windows currently open is decremented.

The next block deletes the associated menu item from the Window menu. At the first four lines, the array
element in which the window object reference in question is located is searched out, the element number
(which correlates directly with the menu item number) is noted and the element is set to NULL. The call
to DeleteMenuItem then deletes the menu item.

The for loop "compacts" the array, that is, it moves the contents of all elements above the NULLed element
down by one, maintaining the correlation with the Windows menu.

The last block disables the Windows menu and the Close item in the File menu if no windows remain open as
a result of this closure.

doInvalidateScrollBarArea
doInvalidateScrollBarArea invalidates that part of the window's content area which would ordinarily be
occupied by scroll bars. The function simply retrieves the coordinates of the content area into a local
Rect and reduces this Rect to the relevant scroll bar area before invalidating that area, that is, adding
it to the window's update region.

doConcatPStrings
The function doConcatPStrings concatenates two Pascal strings.

doErrorAlert and eventFilter
doErrorAlert displays either a caution alert or a stop alert with a specified string (two strings in the
case of the eMaxWindows error) extracted from the 'STR#' resource identified by rStringList. eventFilter
supports doErrorAlert.

The creation of alerts using the StandardAlert function, and event filter functions, are addressed at
Chapter 8.

	Scope of This Chapter
	Window Basics
	Windows, Documents, the Window Manager and Graphics Ports
	Standard Window Elements
	Active and Inactive Windows
	Window Layering

	Types of Windows
	Document Types
	Dialog and Alert Types
	Floating Window Types
	Window Definition IDs
	Window Type Usage
	For Documents
	For Modal Alerts and Modal Dialogs
	For Movable Modal Alerts and Movable Modal Dialogs
	For Modeless Dialogs

	Window Regions
	The Desktop (Gray) Region

	Controls and Control Lists
	The Window List
	The Graphics Port and the Window Object
	The Graphics Port
	The Window Object
	Accessor Functions

	Events in Windows
	Creating Your Application's Windows
	'WIND' Resources
	Structure of a Compiled 'WIND' Resource
	Positioning Specification

	Creating a 'WIND' Resource Using Resorcerer
	Creating the Window From the 'WIND' Resource
	Adding Scroll Bars
	Window Visibility

	Positioning a New Document Window on the DeskTop
	Getting Available Window Positioning Bounds

	Positioning a Saved Document Window on the DeskTop
	User State, Standard State, and Zoom State
	Saving the Window State

	Drawing a Window's Contents

	Managing Multiple Windows and Associated Data
	Handling Events
	Handling Mouse Events
	Mouse-Downs in Inactive Windows

	Handling Keyboard Events
	Handling Update Events
	Handling Update Events — Mac OS 8/9
	Manipulating the Update Region

	Handling Update Events — Mac OS X
	Type-Dependent Update Functions

	Handling Activate Events

	Manipulating Windows
	Dragging a Window
	Zooming a Window
	Vertical or Horizontal Zoom Boxes — Mac OS 8/9

	Re-Sizing a Window
	Closing a Window
	Hiding and Showing a Window

	Providing Help Balloons (Mac OS 8/9)
	Help Balloons —'hrct' and 'hwin' Resources
	Creating 'hrct' and 'hwin' Resources Using Resorcerer

	Main Window Manager Constants, Data Types, and Functions
	Demonstration Program Windows1 Listing
	Demonstration Program Windows1 Comments

